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Supplementary Fig. 1. Sample subtyping and genome-wide methylation dynamics in
glioblastoma. a Glioblastoma samples (n = 60) clustered using methylation array probes (n =
7386) from Sturm et al., 2012. b Consensus subtyping based CpG Island (CGI) methylation
and non-CGI methylation applied with hierarchical partitioning. Results are presented as
follows: the inner circle corresponds to the methylation array subtyping as depicted in panel
(a). The outer circle represents the cluster that the sample is assigned to in that data type,
colored by the cluster identity. We found that CGI methylation cannot distinguish the MES
and RTK | subtypes, while for non-CGI methylation the MES subtype splits into two
subgroups, of which one is closer to the RTK Il samples. These results illustrate that the
methylation dynamics of GB subtypes vary depending on the features analysed. ¢ Density
heatmaps showing per-sample DNA methylation (y-axis, WGBS beta) genome-wide, in
TSSs, exons, introns, and in intergenic regions. Heatmap colors correspond to density of the
methylation distribution in each sample (column). Samples are labelled with their subtype.
Below the heatmaps, multidimensional scaling (MDS) plots for sample methylation
corresponding to (A) As observed in the methylation consensus subtyping in panel (b), the
separation of subtypes is dependent on the methylation feature examined.
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Supplementary Fig. 2. limma analysis of subtype gene signatures. a Venn diagram showing
overlap of the limma-defined subtype gene signatures. For each subtype, gene expression
was compared to the other 3 subtypes weighted equally (example: IDH vs (MES+RTK [+RTK
I1)/3). Genes with adj. P-value < 0.001 were deemed significant. b Multi-dimensional scaling
(MDS) plot of all genes present in the 4 subtype gene signatures in all subtyped glioblastomas
(n = 60) using limma-voom log-cpm values. Samples are coloured by their subtype. c
Examples of subtype genes. From left: FREM3, IDH; CXCL5, MES; ERBB3, RTK I; MEOX2,
RTK II. log-cpm values from limma-voom are plotted, grouped by subtype, as Tukey boxplots
and violin plots. limma 2-sided p-values (corrected using the Benjamini-Hochberg method) are
displayed. IDH, n = 12; MES, n = 19; RTK |, n = 12; RTK Il, n = 17 samples. d Cahoy mouse
brain cell signature ssGSEA enrichment and ESTIMATE scores for each subtype, shown as
Tukey boxplots and violin plots. IDH, n = 12; MES, n = 19; RTK I, n = 12; RTK Il, n = 17
samples. e Gene Ontology term annotation of subtype gene expression (significant terms at
adj. P-value < 0.1 (two-sided) are shown; correction for multiple testing using the Benjamini-
Hochberg method). Up-regulated genes for each subtype (logFC > 0, adj. P-value < 0.05) were
tested for Gene Ontology enrichment. The number of tested genes for each subtype is

indicated.
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Supplementary Fig. 3. RTN analysis. a MDS plots showing the result of ComBat batch effect
removal on the samples in cohort B. Each point corresponds to a sample, coloured by the
source study. b Comparison of networks A and B using TF subtype activation scores. For TFs
common to both networks (n = 506), activity was defined as the 2-tail GSEA differential
enrichment score (dES) for each TF regulon for each subtype signature. Common subtype
MRs (adjusted P-value < 0.01 with the same direction of activation in both networks) are
coloured, and the Spearman’s rank correlation is displayed. ¢ Overlap of significant MRs
identified in networks A and B. The overlap (n = 126) is larger than the number of common
subtype MRs (n = 117) as the subtype is not taken into account. d Activity of common subtype
MRs (n = 117) across all subtypes. A heatmap of the TF activity (two-tailed dES-test, red
activation; blue repression) is shown, with TFs (rows) clustered by the dES scores. Subtype
significant MRs (adj. P-value < 0.01; correction for multiple testing using the Benjamini-
Hochberg method) are labelled with asterisks. We identify previously reported GB MRs
(FOSL1/2, CEBP) and CNS developmental TFs (HES1, JUND, GLI2, POU3F2, SOX9, TCF3,
NFIC, MAFB, BNC2, ASCL1, MYT1, MYTL1L, SOX10). The two-tailed dES-test is similar to the

GSEA permutation test (n=1000 permutations) using the computed enrichment score.
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Supplementary Fig. 4. Cell line model selection. a SOX10 locus DNA methylation (beta)
assayed by the 450k/EPIC DNA methylation arrays in GB cell lines (top) and the MES and
RTK | subtype averages in this study’s tumours (bottom). The distance from the assayed CpG
to the SOX10 TSS is indicated above the heatmap. b SOX10 gene expression (Affymetrix
microarray intensities) in GB cell line models. ¢ Genome browser visualisation of the SOX10
locus. Histone modifications (H3K27ac, H3K4mel, H3K4me3) and the ChromHMM annotation
from a single representative RTK | tumour and LN229 cells are shown, along with SOX10
binding (ChlP-seq), chromatin accessibility (ATAC-seq) and RNA-seq in LN229 and ZH487
cells. d Venn diagram of the overlap of SOX10 binding sites identified using ChlP-seq in the
ZH487 (left) and LN229 (right) cell line models. The most significant result of de novo motif
finding with HOMER, annotated as SOX10, for these common binding sites is displayed.
Enrichment P-value for SOX10 was computed based on a binomial test comparing the

frequency of the motif in foreground vs. background sequences.



Supplementary Fig. 4

a b

S0OX10 locus methylation (microarray)

1087 979 444 -52 -780 -1033 1321 -2906 — 12216 distance to SOX10 TSS (bp) 3000

LN229 -
Us7_MG £
cw
" U251 Sg
j [ ] ZH487 (tumour) § £ 2000
3 ZH487 (cell line) o
NCH_636 £8
NCH_705 T°E 1000
NCH_711d g%‘
-
5: N . I wes tumours (average) 3
g E RTK | tumaours (average) < 0 — — — N w—
§ 2 8§ 8 3 B 8 § 5 mouaweo 2 O 5 % Ig IT Iu
g 8 5 €& g g g § 7 o= 8§ 2 o = 938 O¢ 02
= o & Z 8 5] = 3 3 0.4 = 5 o 2= Z® Zn 2~
§ & 2 § 8 5 & & §F Mo S Ng
g ® ® ®% 8 B 8B 7 @ X
methylation probe |D
SQDX10 'MIR4534 chr22: 38,364,500-38,441,000  30kb
LN229
H3K273065 Y .uL._..a-MMLAl S TR P T Y T PR T | _.44_‘“.L‘mm;._..mm ul.m.....-l .

RTK | Tumour ll
2 A‘;_._LM__L_._ bl S - - -A—.g.“-‘.h__“_

20 LN229

H3K4me1 &“'Dl RTK | Tumour

ﬁzn LN229
H3K4me3 e mandaettbidh, wa. L e

65 l RTK | Tumour |

’“kﬁzf_____.L# DR W VU VO W UV DN W
SOX10 QHE‘”‘“” RS YUY VY SO N

ILN229
ATAC'Seq 9 ki il il 40 kil ,.h.iJJn.L-Lu.l.l © ik .a.l,hﬁl‘,.‘.lm. FARTEP  P TP A .Lﬂ.uu i ..H....JL...:..;E-M.L.. a“.ll.:-laldm-.ll
u].ZH‘_‘_B.?_ PR | Y T S A L_l . e L M - . .1-.. .Alu.‘lL. _ll__ A
°f LN229
RNA-seq 5§J A ZHa87 -
Ch HMM Ll:‘22g - " =0 = n 1 I . W - 11 -
rom RTK | Tumour - — — —

d SOX10 ChiP-seq
ZH487 LN229

axSeLITGCTZ

SOX10 (p = 1e-703)



Supplementary Fig. 5. SOX10 repression causes a PN-MES transcriptomic switch. a Western
blot showing efficient repression of SOX10 protein expression in ZH487, using shRNA
(shSOX10), and LN229, using CRISPRI (sgSOX10); based on three independent experiments,
each. Alpha-tubulin loading control is also displayed. Molecular weights (kDa) measured by
standards are indicated on the left. b GSEA plots showing enrichment of a mesenchymal gene
signature and concurrent depletion of a proneural gene signature in SOX10 KD relative to
control ZH487cells. GSEA-calculated statistics for gene set enrichment are shown. Top row:
limma signatures; Bottom row: Wang signatures. P-values (control/RTK I: 0.018; control/PN_:
0.074; KD/MES: < 0.001; KD/MES-Wang: < 0.001) and FDR values are computed empirically
using a permutation test (n=1000 permutations) based on the enrichment score. ¢ Master
Regulator activity heatmap (VIPER NES) for the RTK | and MES CRC MRs, in the LN229 and
ZHA487 cell line models. Average expression profiles for each condition (for LN229, n = 1
replicate; for ZH487, n = 2 replicates) were used in a VIPER analysis using RTN network A.
Each column corresponds to a cell line condition, and is annotated with the cell line and
treatment (top) and VIPER-inferred activity of SOX10 (bottom). *: two-tailed t-test, P-value <
0.05. d Trans-well invasion assay of ZH487 cells without (top, control) and with SOX10
repression (bottom). Cell numbers were quantified for n =10 wells per condition in one
experiment; scale bar: 50 um. e Ex vivo organotypic brain slice invasion assay. LN229 cells
with and without SOX10 repression (shNT+Dox vs. shSOX10+Dox) were seeded into freshly
harvested murine brain slices (350 um) and left for 3 days. Representative, inverted colour
images and bar plots of mean cell-spike length (pixels) of one experiment are shown; on
average 15 spikes were examined per cell; control, n = 21 cells; SOX10 KD, n = 15 cells; ;
scale bar: 100 um. Mean values are plotted in (d) and (e); whiskers indicate the standard
deviation.
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Supplementary Fig. 6. ZH487 genomics experiments. a EnrichedHeatmap visualisation of
genome regions with differential chromosome accessibility in control and SOX10 KD ZH487
cells, as identified by ATAC-seq analysis. SES-normalised signals of SOX10 ChlP-seq, ATAC-
seq, and BRD4 ChlIP-seq are displayed. Signal intensity is shown in the blue-red heatmaps,
where each row shows a single ATAC peak, as indicated by the vertical dashed lines, and
1kbp further 5" and 3’. The line plots at the top of each heatmap display the mean signal
intensity across all the regions in that category (control: green; SOX 10 KD: blue). b Volcano
plots of de novo motif finding with HOMER from the differentially bound ATAC-seq peaks in
the ZH487 cells. The significantly enriched motifs are labelled. ¢ Visualisation of ChlP-seq
signal at SOX10 peaks in the ZH487 model. Per-factor scaled, SES-normalised signal is
visualised for each SOX10 peak, extended for a further 1kbp on either side. d The epigenomic
landscape of RUNX2 in the LN229 cell line in control (NT) and shSOX10 conditions. The tracks
display (from top to bottom): RNA-seq; ATAC-seq; ChlP-seq signal for BRD4, H3K27ac and
H3K4mel; and the ChromHMM annotation. Regions of interest are denoted with boxes (Prom,
promoter; Enh. 1-3, candidate enhancer regions). e RUNX2 RNA expression levels in LN229
and ZH487 cells measured by RT-gPCR following JQ1 treatment (500nm, 6h) and SOX10
repression. f JQ1 treatment blocks BRD4 recruitment to RUNX2 enhancer regions in the
LN229 model. The four open chromatin regions labelled in (H) (Prom, Enh. 1-3) were tested
for BRD4 binding using ChIP-gPCR following SOX10 repression and JQ1 treatment (500nm,
6h). In (e) and (f) the mean values of 3 technical replicates of one experiment are shown.

12
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Supplementary Fig. 7. Uncropped Western blots. a BRD4/SOX10 co-IP in the cell line
LN229 (Figure 5h). b SOX10 knockdown in the cell lines LN229 and ZH487 (Supplementary
Fig. 5a).
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Supplementary Table 1

REAGENT or RESOURCE SOURCE IDENTIFIER
Antibodies
Goat anti-human SOX10 (Western blot) Santa Cruz Cat#tsc-17342
Rabbit anti-human SOX10 (ChlP-seq, Co-IP) Abcam Cat#ab155279,
lot GR113617-51
Rabbit anti-lbal antibody (IHC) Wako Cat#019-19741
Rabbit polyclonal BRD4 Ab (ChIP-seq, WB and ChIP-gPCR) | Bethyl Lab. Cat#A301-985A100
H3K27Ac (GB patient ChIP-seq) Active Motif Cat#AM#39133, lot 5
H3K4mel(GB patient ChIP-seq) Active Motif Cat#AM#38297, lot 1
H3K4me3 (GB patient ChlP-seq) Active Motif Cat#AM#39159, lot 2
H3K9me3 (GB patient ChlP-seq) Active Motif Cat#AM#39161, lot 3
H3K27me3 (GB patient ChlP-seq) Millipore Cat##07-449, lot
2382150
H3K36me3 (GB patient ChlP-seq) Active Motif Cat#AM#61101, lot 7
Rabbit polyclonal to Histone H3 (cell line ChlIP-seq) Abcam Cat#ab1791
Rabbit polyclonal to Histone H3K4mel (cell line ChiP-seq) | Abcam Cat#ah8895
Rabbit polyclonal to Histone H3K4me3 (cell line ChiP-seq) | Abcam Cat#ab8580
Rabbit polyclonal to Histone H3K9me3 (cell line ChiP-seq) | Abcam Cat#ab8898
Rabbit polyclonal to Histone H3K27ac (cell line ChIP-seq) Abcam Cat#ab4729
Rabbit polyclonal to Histone H3K36me3 (cell line ChlP-seq) | Abcam Cat#ah9050
Rabbit polyclonal to Histone H3K27me3 (cell line ChlP-seq) | Abcam Cat#ah6002
alpha-Tubulin Sigma Cat#T-9026
Green Fluorescence Protein (immunofluorescence) abcam Cat#13970
Allograft Inflammatory Factor 1 (IBA1; immunofluorescence) | Wako Cat#019-19741
Bacterial and Virus Strains
TOP10 Chemically Competent E. coli Invitrogen Cat#C404010
Lentivirus (pLKOL1, constitutive, packed in HEK293) Sigma Aldrich Cat# SHCO001
Lentivirus (pLKO-Tet-On, packed in HEK293) Addgene Cat#21915
Lentivirus (CRISPRi) pU6-sgRNA EF1Alpha-puro-T2A- | Addgene Cat#60955

BFP

Biological Samples

Human glioblastoma tissue samples

Moscow, Russia

Burdenko Neurosurgical

Institute
Chemicals, Peptides, and Recombinant Proteins
DMEM medium Sigma Cat#D5546
L-glutamine Sigma Cat#G7513
Pen-strep Sigma Cat#P4333
Fetal bovine serum Gibco Cat#10082147
Tet-Free FBS Clontech Cat#631106
Neurobasal medium Invitrogen Cat#10888-022
Human Recombinant EGF Gibco Cat#PHG0311
Human Recombinant FGF Biomol Cat#50361
B27 medium Invitrogen Cat#12587010
QuantiTect Rev. Transcription Kit (50) Qiagen Cat#205311
Puromycin Gibco Cat#A1113803
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RNase-Free DNase Set (50) Qiagen Cat#79254
QIAquick PCR Purification Kit (250) Qiagen Cat#28106
QIlAprep Spin Miniprep Kit (250) Qiagen Cat#27106
QIAGEN Plasmid Maxi Kit (25) Qiagen Cat#12163
RNeasy Mini Kit (250) Qiagen Cat#74106
Bioanalyzer High Sensitivity DNA Analysis Agilent Cat#5067-4626
Qubit™ dsDNA HS Assay Kit Invitrogen Cat#Q32851
Qubit™ RNA HS Assay Kit Invitrogen Cat# Q32852
DMEM/HAM F12 Biochrom Cat#F4815
Critical Commercial Assays

TruSeq Stranded Total RNA LT Sample Prep Kit lllumina Cat#RS-122-2201
Paired-End Sample Prep Kit lllunima Cat#PE-102-1002

EZ DNA Methylation Kit

Zymo Research

Cat#D5001

Magna ChIP™ A/G Chromatin Immunoprecipitation Kit

Merck-Millipore

Cat#17-10085

Deposited Data

Raw data (restricted access) EGA EGAS00001003230
Processed and pseudo-anonymised data GEO GSE121723
Experimental Models: Cell Lines

Human: LN229 ATCC Cat# CRL-2611

Human: GB patient-derived ZH487

Zurich University

N/A

Human: HEK-293T ATCC Cat#CRL-3216
Mouse: mGB1 DKFz Peter Angel’s lab
Oligonucleotides

gPCR Primers (see Supplementary Data 13) This paper N/A

shRNA oligoes targeting human and mouse SOX10 This paper N/A

(see Supplementary Data 13)

CRISPR-Cas9 SOX10 knockdown constructs This paper N/A

(see Supplementary Data 13)

ChIP-gPCR primers sequence This paper N/A

(see Supplementary Data 13)

Recombinant DNA

pLKO.1-puro Sigma Aldrich Cat# SHCO001
psPAX2 (lentivirus packaging plasmid) Addgene Cat#12260
pMD2.G (Lentivirus envelope plasmid) Addgene Cat#12259
Software and Algorithms

R R-Project 3.4.3,35.1
STAR Open Source 2.3.0e
htseqg-count Open Source 0.6.0

bwa-mem Open Source 0.7.8

methylCtools Open Source 1.0.0

BEDTools Open Source 2271

MethylSeekR 1.14.0

Snakemake Open Source 3.13.3
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TrimGalore

Open Source

https://github.com/FelixKrueger/
TrimGalore

deepTools2 Open Source DeepTools (v. 2.3.1); Ref. 10

MACS2 Open Source 2.1.1.2016030
https://github.com/tacliu/MACS

BowTie2 Open Source v. 2.3.4.39

SICER Ref. 22

ChromHMM Open Souce 1.19

ROSE2 Open Source https://github.com/BradnerLab/
pipeline/

bigWigAverageOverBed Open Source v2

CRCmapper Open Source version 1.0 (December 2015)
Ref. 13

GSEA Broad Institute v3.0

HOMER Open Source 49.1

minfi Bioconductor 1.24.0

conumee Bioconductor 1.30.0

edgeR Bioconductor 3.20.1

limma Bioconductor 3.34.4

GSVA Bioconductor 1.26.0

ESTIMATE Bioconductor 1.0.13

clusterProfiler Bioconductor 3.6.0

cola Bioconductor 1.0.0

gcrma Bioconductor 2.50.0

sva Bioconductor 3.26.0

RTN Bioconductor 234

ggplot2 Bioconductor 221

monocle Open Source 2.10.1

viper Bioconductor 1.14.0

ComplexHeatmap Bioconductor 1.18.1,1.19.1

Rtsne CRAN 0.13

ChlIPpeakAnno Bioconductor 3.12.4

EnrichedHeatmap Bioconductor 1.9.2

TxDb.Hsapiens.UCSC.hg19.knownGene Bioconductor 3.2.2

DiffBind Bioconductor 2.6.6

circlize Bioconductor 0.4.6

Gviz Bioconductor 1.22.3

epik Open Source https://github.com/jokergoo/epik

featureCounts in the Subread suite

Open Source

153
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https://github.com/taoliu/MACS
https://github.com/jokergoo/epik

Supplementary Table 2

gPCR primers

name species  primer sequence

SOX10-F human CTTTCTTGTGCTGCATACGG
SOX10-R human AGCTCAGCAAGACGCTGG
ERBB3-E human CAAGTTCCCTTGAGGAGCTG
ERBB3-R human CATCTCGTTGCCGATTCATA
Olig2-F human GCTCCTCAAATCGCATCCA
Olig2-R human AAAGGTCATCGGGCTCTG
CSPG4-F human TGGCCTTCACTGTCACTGTCC
CSPG4-R human CACTTGCTTCTGGGCCGTCACTCG
CD44-F human GACACCATGGACAAGTTTTGG
CD44R human AAGCGGCAGGTCATATTCAA
RUNX2-F human TGGTTACTGTCATGGCGGGTA
RUNX2-R human TCTCAGATCGTTGAACCTTGCTA
FOSL2-F human CAGAAATTCCGGGTAGATATGCC
FOSL2-R human GGTATGGGTTGGACATGGAGG
SERPINE1-F human ACCGCAACGTGGTTTTCTCA
SERPINE1-R human  TTGAATCCCATAGCTGCTTGAAT
ARE-E human GACCACGATCCTCTACAAGC
ARF-R human TCCCACACAGTGAAGCTGATG
DCTN2-F human CGCCATGGCGACCCTAAAT
DCTN2-R human TTGTCAGCTCCTCCGCATCGAA
Sox10-F mouse GTGCCAGCAAGAGCAAGCCG
Sox10-R mouse CTGCCTTCCCGTTCTTCCGCC
Hprt_F mouse CTTCCTCCTCAGACCGCTTTTT
Hprt-R mouse ATGTAATCCAGCAGGTCAGCAA
Gapdh_F mouse GTGCAGTGCCAGCCTCGTCC
Gapdh-R mouse CAGGCGCCCAATACGGCCAA
ChIP-PCR primers

RUNX2-Prom-F human CCATCACCTCCATCCTCTTTC
RUNX2-Prom-R human AATACGCATCACAACAGCC
RUNX2-enh1-F human TTTTTCTGCTGCGAACAATG
RUNX2-enh1-R human CCCCAAAGACTTCCAAAACAC
RUNX2-enh2-F human CTTTCCATTCCTCTTCTCTTCC
RUNX2-enh2-R human CGAAAATAGCTCAGCTCTGAC
RUNX2-enh3-F human CCAAAAGAACGACCACAAAAC
RUNX2-enh3-R human CCAAAACCCTCTCCCAGAAC
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Supplementary Methods

General settings for sample-wise methylation features: methylation was represented as
vectors of beta values, in which the order of data points corresponds to chromosomal CpG
positions. Methylation features (partially methylated domains (PMDs), lowly methylated
regions (LMRs), DNA methylation valleys (DMVs)) are defined based on the comparison of
methylation measurements between genome segments. Each segment should be
homogeneous in its methylation, relative to outside regions. We used the Bayesian framework
and dynamic programming approach of fastseg (1.20.0) ! to identify change points in the
genome corresponding to segment borders.

As fastseg does not take consideration the distance between CpG sites, each chromosome
was split into blocks if the gap between two adjacent CpG sites is larger than 100kb. Blocks
containing less than 50 CpG sites were removed.

While fastseg can predict segment borders, each segment must still be classified based on
its methylation. To do so, we examined the distribution of the mean and standard deviation of
methylation in segments. The following plots visualize the distribution of segments’ methylation
means and standard deviations for all tumour samples and all normal samples, separated by
subtype:

All IDH samples All MES samples. AllRTK_| samples All RTK_Il samples All norma samples
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Supplementary Fig. 8. Methylation segment classification. Mean methylation (beta values; X-axis) are
plotted against the standard deviation of methylation (Y-axis). Red and blue boxes indicate the low and
high methylation segments for each glioblastoma subtype and normal brain samples. IDH, n = 12; MES,
n=19; RTK I, n=12; RTK Il, n = 17 samples.
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It is clear that there are at least two major clusters of data points: one corresponding to low
methylation and the other corresponding to high methylation. The remaining points form a
sparse and heterogeneous intermediate group. According to the distribution of the points, we
categorized segments into three groups using the following cutoffs:

e Group 1 segments, low methylation: IDH: mean < 0.15; MES: mean < 0.15; RTK I:
mean < 0.10; RTK II: mean < 0.15. (marked by red rectangles)

e Group 3 segments, high methylation: IDH: mean > 0.7; MES: mean > 0.65; RTK I:
mean > 0.55; RTK II: mean > 0.60. (marked by blue rectangles)

e Group 2 segments, intermediate methylation: all remaining segments.
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Supplementary Fig. 9. Methylation segment features. Comparison of the three methylation segment
types based on their number and length in all subtypes. IDH, n = 12; MES, n =19; RTK |, n =12; RTK
II, n =17 samples.

The above summary plot shows the number of segments, mean segment width and the total
number of base pairs of segments in all tumour samples. We observe overall that there are
more group 2 segments by absolute number, but group 3 segments are much longer on
average and represent the majority of the genome. For some samples which show global
hypomethylation (RTK | subgroup), the group 2 segments are longer and represent most of
the genome. Group 1 segments are short and occupy much smaller proportions of the genome.
Next we define different methylation features based on the three sets of segments.

DNA methylation valleys. DNA methylation valleys (DMVs) are regions showing very low
methylation. One major feature identifying DMVs is that they are highly hypomethylated
compared to the flanking regions. As such, we looked for DMVs in group 1 segments. For each
segment, we denote the mean methylation as m, we calculated the absolute methylation
difference to its two neighbouring segments:

Mgir = MIN(|M - Miee|, [M - Mrigne])

and to meet the assumption that methylation drops within DMVs, we defined an additional
criterion:
m < Miert aNA M < Mright

To determine the cutoff of mgir, we plotted mair vs segment width for all tumour samples and all
normal samples. The distributions in the following plots are quite homogeneous. For DMVSs,
we simply set mgir > 0.5 for IDH/MES/RTK IlI/normal while mgi > 0.3 for RTK | (vertical dashed
lines).
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Supplementary Fig. 10. Identification of DNA methylation valleys. Methylation difference to
neighbouring segments (beta values; X-axis) are plotted against the segment widths (Y-axis). The five
plots in the first row were made as scatter plots and the plots in the second row were made as contour
plots for visualizing the 2D density distributions of data points. Vertical dash lines corresponded to the
cutoffs for selecting DMVs. IDH, n = 12; MES, n = 19; RTK I, n =12; RTK Il, n =17 samples.

Lowly methylated regions: Similar to DMVs, lowly methylated regions (LMRs) also show
lower methylation compared to neighbouring segments; however, the absolute methylation
level is not as low as in DMVs. We searched for LMRs in group 2 segments. As with DMVs,
we plot the absolute methylation difference versus the width of group 2 segments. In contrast
to the same plots for DMVs, we observed two major clusters in these plots. One cluster
corresponds to relatively higher methylation with shorter widths, and the other to relatively
lower methylation with longer widths. As LMRs are normally short regions, we defined
segments as LMRs if the methylation difference is larger than 0.26 and the width is less than
5kb (green rectangles on plot).
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Supplementary Fig. 11. Identification of lowly methylated region. Methylation difference to
neighbouring segments (beta values; X-axis) are plotted against the segment widths (Y-axis). The five
plots in the first row were made as scatter plots and the plots in the second row were made as contour
plots for visualizing the 2D density distributions of data points. Green rectangles covered the segments
that were selected as LMRs. IDH, n = 12; MES, n = 19; RTK I, n =12; RTK Il, n = 17 samples.
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Partially methylated domains. MethylSeekR (1.14.0) 2 was used to detect PMDs. The PMD
segments are filtered by width > 10kb.

Consensus regions: As DMV/LMR/PMD are called for each sample separately, we defined
the subtype-wide consensus feature set as follows. For k sets of e.g. LMRs, segments with a
cross-sample coverage larger than or equal to 4 are kept as subtype-level consensus LMRs.
Finally neighbouring LMRs are merged if the distance between them is less than 1kb, to
minimise the number of small segments.

Enrichment of genomic features: we adopted the following method to calculate the
enrichment of a set of methylation features (e.g. LMRS) in another set of genomic features
(e.g. genes or certain chromatin states). We calculated the overlap of the two sets of regions
of interest using the Jaccard coefficient, defined as the total number of basepairs in the
intersection of the two sets divided by the total number of basepairs in the two sets’ union. The
significance of this overlap is calculated by comparison to a background set of genomic regions
with a comparable CpG content. Background regions were selected as follows steps: 1) Select
a proper window for the methylation feature sets. Regions in methylation feature sets are split
into windows with size w, defined as the 25" quantile of all widths in that set, rounded to the
thousandth digit. If w is smaller than 1kb or larger than 10kb, it is set to that value. Small
windows with width less than w/4 are filtered out. 2) Calculate the CpG content for those
windows. For this filtered window list, the number of CpG sites per 1kb is calculated and
denoted as a vector p. 3) Select genomic background with similar CpG content. The number
of CpG sites per 1kb is also calculated for all 1kb windows in the genome, denoted as pq, and
appropriate CpG-matched background genomic regions are selected by picking windows with
pg between the 5" and 95" percentiles of p from the methylation feature window list. The
background distribution of overlaps is calculated by randomly permuting the input methylation
regions with these CpG-matched background regions 1000 times using bedtools (v2.27.1) and
calculating the Jaccard coefficient. Finally, a z-score of enrichment is calculated, (s - u)/o,
where s is the Jaccard coefficient for the two sets of regions and u and ¢ are the mean and
standard deviation of the Jaccard coefficient in the random permutation.
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